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Marginal likelihood

P(WIM)p (ylx, w, M)

p(wx,y, M) =

Marginal likelihood:
= [pwPOp(yx, w0 aw:

Second level inference: model comparison and Bayes’ rule again

p(M)
Mly,x) = V5P M).
POyx) = P p()
The is used to select between models.

For linear in the parameter models with Gaussian priors and noise:

= Jp(WIM)p(yIX,W, M)dw = N(y; 0,02 ® D" + 02, 1)

noise
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Understanding the marginal likelihood (1). Models

Consider 3 models M, M, and M3. Given our data:
* We want to compute the marginal likelibood for each model.

* We want to obtain the predictive distribution for each model.
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Understanding the marginal likelihood (2). Noise

Consider a very simple noise model for y,, = f(xn) + €n
e ¢, ~ Uniform(—0.2,0.2) and all noise terms are independent.

fo if [yn — f(xn )| > 0.2
plynlf(xn)) = { 1/0.4 =2.5 otherwise

* The likelihood of a given function from the prior is

|0 if for any n, |yn —
plylf) = H PYnfflxn)) = { 2.5N otherwise

We will approximate the marginal likelihood by Monte Carlo sampling:

f(xn)l > 0.2

1 S
p(ywmi)sz(ym (£0,) df~§§ p(ylf) = S 25N

* A total of S functions are sampled from the prior p(fM;).
e f, is the s™ function sampled from the prior.

* S, is the number of samples with non-zero likelihood: these are accepted.

The remaining S — S, samples are rejected.
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Simple Monte Carlo

We can approximate integrals of the form

z = J f(x)p(x)dx,

where p(x) is a probability distribution, using a sum

.
1
z ~ TZf(xm), where xY) ~ p(x).

t=1

As T — oo the approximation (under very mild conditions) converges to z.
This algorithm is called Simple Monte Carlo.
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Understanding the marginal likelihood (3). Posterior

Posterior samples for each of the models obtained by rejection sampling.
* For each model we draw 1 million samples from the prior.
* We only keep the samples that have non-zero likelihood.
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Predictive distribution

Predictive distribution for each of the models obtained.
* For each model we take all the posterior functions from rejection sampling.
e We compute the average and standard deviation of f(x).
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Conclusions

Probability theory provides a framework for
* making inferences from data in a model
* making probabilistic predictions

It also provides a principled and automatic way of doing
* model comparison

In the following lectures, we’ll demonstrate how to use this framework to solve
challenging machine learning problems.
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